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The article presents a fast pseudo-spectral Navier—Stokes solver for cylindrical
geometries, which is shown to possess exponential rate of decay of the error. The
formulation overcomes the issues related to the axis singularity, by employing in the
radial direction a special set of collocation points together with standard Chebyshev
polynomials. A multi-domain technique with patching interfaces yields significant
improvements in the conditioning of the algebraic problems arising from the dis-
cretization procedure and allows for an enhanced near wall resolution of wall bounded
shear flows. The elliptic kernel enjoys the efficiency of an analytic expansion of the
harmonic extension. The method is tested by computing the formation of Taylor
vortices in a rotating Couette flow for both axisymmetric and non-axisymmetric
configurations. A direct numerical simulation of a turbulent pipe flow at moderate
Reynolds number demonstrates the effectiveness of the method in as much as the
axis singularity is concerned. Results compare well with reference experimental and
numerical data. © 1999 Academic Press
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1. INTRODUCTION

Thanks to the recent growth in computer hardware, we have been witnesses of an im
tant shift from basic building block flows in simple geometries to more realistic configur
tions. However, many fundamental issues in the study of transition and turbulence of €
very simple flows remain open and thus the interest for a comprehensive analysis to
becoming more and more important. The simulation of turbulent flows requires the accu
resolution of all high frequency fluctuations associated to the small scales of turbuler
The quickly growing ratio of the integral to the dissipative scale with Reynolds numb
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564 MANNA AND VACCA

dictates severe resolution requirements for the direct numerical simulation (DNS) of e
very low Reynolds number flows. As widely demonstrated by the open literature (see
instance [1] and references therein), spectral methods provide the most confident plat
for a reliable turbulent data analysis, simply clearing out all possible doubts on the imp
of the numerical scheme on the physics of the flow under investigation. This feature is
enjoyed by any other low order method. The higher computational cost of these meth
is widely compensated by their fast (exponential) rate of convergence, as well as by t
efficiency for long time integration problems.

Extensive developments are documented in the literature for Cartesian geometries
[2] for a review, while in cylindrical coordinates, even for flows with two homogeneou
directions, the available material is rather limited. The reason may be attributed to the a
tional difficulties which distinguish Cartesian flow problems from cylindrical ones, main|
the variable coefficients in the differential operators and the singularity in the coordin:
system.

The first issue, which arises from the implicit treatment of the diffusive terms in tt
Navier—Stokes equations, precludes in fact the straight application of the “full step meth
of Orszaget al.[3]. Leonard and Wray [4] introduced a new vector function in the expar
sion of the velocity field which is divergence free and satisfies the boundary conditions
viscous flow. They demonstrated, in a weighted residual context, spectral convergenc
a linear stability problem using a special set of Jacobi polynomials. Priymak [5] succee
in constructing a new algorithm without fractional steps where pressure values in the
location points are eliminated from the discrete equations. The polynomial approximat
in ther direction is either based on odd—even Chebyshev series with standard colloca
nodes, or on Jacobi polynomia®s1(r) with r € [—1, 1]. In the latter case the spacing of
the collocation points yields a reduced (compared to the former) resolution near the ph
cal boundaries. This could represent a significant limitation for the simulation of turbule
flows where a correct prediction of the wall friction velocity is of paramount importanci
All the above techniques have no splitting errors and thus appear very attractive; howe
storage requirements in [4] and computational efficiency in view of the successive appr
mations method used in [5], render splitting methods more appealing for DNS of turbul
flows. The first application of a spectral technique employing a first order fractional st
to investigate the behavior of finite amplitude disturbances in pressure driven pipe fi
is due to Orszag and Patera [3]. As concerns the expansion in radial direction they t
even or odd Chebyshev series which are compatible with the behavior of the variable
the origin. It is our belief that all of the above methods beghapal they cannot compete
with their equivalent multi-domain counterpart. In fact domain decomposition principl
not only alleviate the limitations of global methods allowing for more complicated floy
simulations, but in addition they enable some sort of local refinements and thus increas
computational efficiency while maintaining the global (at domain level) rate of convergen
These features are probably all embodied in the spectral element technique of Paterz
Zhanget al. [7] carried out a direct numerical simulation of pipe flow at low to moderat
Reynolds numbers with one dimensional spectral elements. In the element adjacent t
axis they used Lagrange interpolants based on the zeros of Jacobi polyneftiaiswith
associated weights which are zero at 0 and Legendre Lagrange interpolants elsewhere
The removal of the geometrical singularity is carried out applying Hopital’s rule; by doir
so they preserved the spectral convergence rate. We acknowledge that spectral elen
especially in their non-conforming version [8], represent the cornerstone for the simulat
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of incompressible flows in complex geometries. Yet, they suffer from significant difficultie
for large scale computing associated to the huge algebraic system resulting from the
cretization. The development of well preconditioned iterative solvers constitutes, theref
an essential feature of the method.

In this work we present an efficient and accurate multi-domain pseudo-spectral techni
which, for turbulent flows with two homogeneous directions, is fully competitive, if not st
perior, to the spectral element method of [7]. We propose a simple and effective procet
to overcome the axis singularity based on the use of standard Chebyshev polynomial
gether with a special set of collocation points. The multi-domain technique, with patchi
interfaces, yields significant improvements in the conditioning of the algebraic proble
arising from the discretization procedure. The elliptic kernel exploits the efficiency of :
analytic expansion of the harmonic extension in terms of Bessel functions. The metl
is demonstrated to possess exponential rate of convergence on a domain basis not
for elliptic model problems, but also for the full Navier—Stokes equations. Validation
conducted computing the formation of Taylor vortices in a rotating Couette flow for bo
axisymmetric and non-axisymmetric configurations. Direct numerical simulation of turk
lent pipe flow at moderate Reynolds number demonstrates the effectiveness of the meth
coping with the axis singularity. This paper is organized as follows: in Section 2 we pres
the mathematical formulation and the temporal discretization of the Navier—Stokes ec
tions. Section 3 covers the spatial discretization with particular emphasis on the don
decomposition and the treatment of the axis singularity. The same section demonst
the exponential convergence rate of the elliptic kernel. Finally in Section 4 we check
accuracy of the Navier—Stokes algorithm for three different classes of test problems.

2. MATHEMATICAL FORMULATION

In this work we are concerned with the incompressible Navier—Stokes equations in tf
primitive variable form, although the mathematical and numerical formulation of the meth
applies to a more general set of partial differential equationsx ketz, r, #)t andt be the
space and time coordinates. The governing equations then read

au

1
g=—Vp—/\/u+R—e£u, V(x,t) € 2 x (0, T), 1)

and
Vou=0, VX, t) € @ x (0, T), (2)

whereu = (u, v, w)* are the non-dimensional streamwise, radial, and azimuthal veloci
componentsp is the non-dimensional pressure, @adhe physical domain with a smooth
boundaryd 2. The Reynolds numbeRe=ul/v is based on the kinematic viscosityand
an appropriate velocity and length scalesfdl).

Equations (1) and (2) are subject to a suitable set of boundary conditions,

uix,t) =w, V(x,t1) € 02 x (0, T), 3)
and of initial conditions,
u(x, 0) = wp, VX € @, 4)

whereV owg=0in Q.
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The differential operators of (1) and (2) in cylindrical coordinates are given by

au au lau\'
Vu=|—,—.—— |,
dz Jr r a6

t
wnNy vNy
Vun:(Vun,an—r—,an—i-T) .

ou lorv 1low

Vou=——+= -—,
° az+r ar +r a0
2u 19 (/ du 1 9%u
AU= — +-——(r— ——, 5
822+r8r(8r> r2 962 ®)
LU= Au AU A v 28wA 29v  w)\'
= = AV — — — —— ,Aw + — s
2 296 rzge r2
1orw 19v 18u  dw v ou\'
Vxu=|-—->—, "= —-—, ——— .
r or rog r oo dz 9z or
In particular the non-linear convective term is computed in rotational form:
V|ul?
Nu=(Vxu) xu+ |2|. (6)

Following the standard pressure correction approach we integrate the governing equa
decoupling the velocity and the pressure at each time step [9]. To overcome the time step
tations of the diffusive operator we implicitly discretize the viscous terms (Crank—Nicolsol
the convective operator is instead treated explicitly for simplicity (Adams—Bashforth). L
u" be the approximation to(-, nAt) at time levenAt, andv the intermediate velocity vec-
tor field of the time splitting method whose ci¥ix v approximates/ x u up toO(At)2.
With these assumptions the semi-discrete form of (1), (2) reads

v—u" 1 3 1
— AN+ U) =-—Vp"— ZANU"+ ZANU", 7
At 2ReSV T A )
un+l_v 1
- -V n+1 _ n 8
AL SV(P P, (8)
Vou™l=0. 9)

The above formulation introduces a vortex sheet of stredjtht)? at the boundaries
which vanishes in the steady state.

Equations (7) constitute a set of coupled Helmholtz equations for the predicted velo
components; a scalar Poisson equation for the pressure follows from (8)—(9). Referrin
the former set, for the sake of clarity, let us rewrite (7), as

av — Lv =T, (20)

wherea = 2Re/ At andf includes all known terms involved in (7). Unlike the Cartesian
case, where the implicit treatment of the diffusion (together with the explicit treatment of t
convection) still allows us to uncouple the momentum equations, in cylindrical coordina
the radial and azimuthal momentum equations are strongly coupled, as it can be e:
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verified by inspection of (5). In the present work we assume the flow to be homogeneou
the azimuthal directiofi and thus we enjoy the computational efficiency of the fast Fourie
transform by expanding in Fourier series all variables. The velocity field and the press
are then represented in the transformed spaddpgomplex coefficients,, and py, as

My /2—1

vz o= > vVmzr.tye™  voelo, 2], (11)
m=—M,/2
My /2—1

p(z,r,0,t) = Z Pm(z,r,t) €™ Vo €0, 2x]. (12)
m=—My /2

Introducing (11) in (10) and following the Galerkin projection method yields

with
A m? m? + 1 2.
LVm = | ArzUm — rjum, Arzvm — Tvm — ﬁ'mwm,
m +1 2. !
ArZU)m — Tu)m “+ r2|mvm) s (14)

3% 193 [ 9
frer = 822+r3r<rar)'
An analogous procedure is applied to the pressure Poisson equation.

This representation not only allows us to efficiently simulate a large class of turbule
flows, which are two dimensional in a statistical sense, but, as it will be shown below
further provides the possibility of decoupling the diffusive terms. Let us begin observi
that the coupling terms Bwp,/r2 and 2muy,/r? of ther andd complex components differ

in sign, and thus a diagonalization of (14) can be obtained through a linear combina
according to the following change of variables [3]:

Vm = (G, 7, ﬂf)t = (Um, Um + i wm, vm — iwm)t~ (15)
Equation (13) then reduces to

where the scalar componentsfgfobey analogous transformation as (15), and

— r_2u’ A0 — 2 v, ArzW 2

2 2 _1\2 t
R = (Arzu m 7(m+1) v A w — 7(m 1) 1])) . (17)

Irrespective of the functional representation of the unknowns irethedirections, and
disregarding the removable axis singularity, the above decomposition reduces, in a c
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general form, the original set of p.d.e. (7) to a cascade of two dimensional uncoug
elliptic problems, which do not differ from their Cartesian counterpart except for the expli
r-dependence of the differential operators. The class of problem investigated herein all
us to further exploit the Fourier transform procedure even irzttigection. Without loss
of generality we can therefore representtfite Fourier coefficient of the generic variable
¢ as

M,/2—1

PmZ T )= > dmir, )M (18)

k=—M,/2

where the wave number= 27 /L, is typically selected on physical ground,; being the
length of the computational domain in tkalirection. By doing so, we further simplify
the p.d.e. (16) to a one dimensional problem. More precisely, again applying the Galel
projection technique we are left wittl, x My uncoupled problems of the type

N m-+y)2\ . . .
LVmk = (62+ (rzy))vmk_ A Vmk = ok, (19)
where
10 0-
Arr=——(r—|, 20
" Tror ( ar) (20)

with e?=o + (kB)2 andy =0, 1, —1 for thez, r, and® components of the Helmholtz
equations. The Poisson equation for the pressure follows from (19) setting= 0, with
obvious meaning of the source terig.

3. NUMERICAL METHOD

As discussed in the Introduction domain decomposition methods partially alleviate
limitation of the global spectral method while at the same time enabling a local refinem
whichincreases the computational efficiency. Let us consider adecomposition of the orig
domainQ = (r;, r,) into an open set oMy disjoint subdomaing; (2 =U", Q) inside
each of which the solution satisfies the differential equation (19), that, for sake of clar
we rewrite as

Lu=f in Q, (22)
U=gp onaQ2p, Vu-n =gy oniQy, (22)

with 9Q=0Qp UdQy and aQ2p N a2y =0; n the outwarding normal oM 2; L the
elliptic operator (19); and’, gp, andgy the given data which are assumed to be smoot
enough. Following [10], let us denote with the interface unknowns, defined dh=
(§/ Ui'\":"l Qi)/9Q2p. Using a linearity argument we decompose the solutiowithin each
subdomain as

Ui = wj + v, (23)
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where the functionw; satisfies the inhomogeneous Dirichlet elliptic problem (hereafte
denoted as Problem PI),

Lwi = fi in Qi,
wi = Op ono2 NoRp, (24)
wi =0 onaQ; NT,

and the “harmonic” extension of v;, satisfies the problem (hereafter denoted as Proble
PH)

Ly =0 inQi,

v =0 ona2i NoRp,

Vuvi-n=gny — Vwj -n onoa N AN, (25)
vi —v; =0 ona NAKj i # |,

Vi -0y + Voj -nj = —(Vw; - nj + Vwj - nj) oNn a2 N IR i £ .

It is observed that the weak formulation of (25) leads to an entirely equivalent formulati
in terms of the Steklov—Poinaaoperator.

Having decoupled on a subdomain basis the original elliptic differential equation in t
subproblems of reduced size, itis possible to exploit in a straightforward manner the par:
architecture of MIMD type machines. This is only true for Problem Pl whereas Proble
PH is necessarily sequential in nature. However, the cost associated to Problem PH wi
shown to be marginal, thanks to the analytic solution procedure described below. The |
of finite dimensional approximation method which is used to solve the above problem:
irrelevant to the present formulation.

Referring to Problem Pl let us start with some notations Ryebe the space of algebraic
polynomials of degreecN with respect to the variable. Moreover, lefx = cogzk/N),
withk=0,..., N, theN + 1 nodes of the Gauss—Lobatto—Chebyshev quadrature formt
in the interval [1 —1] [11]. It is straightforward to define a set which is the image
of the N + 1 Lobatto pointss by an affine transformation mapping, [£1] ontoQ;, with
Qi # §p D {0}. The cas&2, will be addressed later on. The discrete approximation of (24)
(25) is achieved following the so-callgghtching collocatiormethod first introduced by
Orszag[12]. Convergence estimates for both Chebyshev and Legendre polynomials, prc
spectral rate of decay on each subdomain, can be found in [13]. In our framework and \
reference to Problem PI, the above method consists in looking, within each subdomain
a discrete functiom™ € Py satisfying

LwN = fN in Qi,
wN = g} ona NIy, (26)
wN =0 ond; NT.

The matrices arising from the algebraic systems (26) are full, albeit of small size, as discu:
later; thus pivoted Gaussian elimination appears to be an attractive choice in view of
ill conditioned character of the matrices. For time dependent problems and in a pare
architecture environment, where core memory is not an issue, it is conceivable and r
likely optimal to compute and store once in a preprocessing phase the LU factors
alternatively to apply a diagonalization procedure. Incidentally we remark that the effec
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the variable coefficient in the operatorenders the application of thiautechnique, which
cost-wise is very attractive, not straightforward [3].

Turning to the homogeneous Problem PH and with reference to the opkeraternote
that the harmonic extension satisfies

d
r —+rd—1:—(62r2+m2)w=0, (27)
which, with the change of variables=re, reduces to the modified Bessel differential

equation,

X2w” 4+ xw' — (X2 + m?)w = 0, (28)

where the standard differentiation notation has been employed. Note that theterm)?
in (19), withy =0, 1, —1, is a non-negative integer, and thus, for sake of clarity, we ce
sety =0. We recall that (28), because of tkéfactor multiplying the second derivative,
has a regular singularity at= 0. The solution of this 0.d.e., for integer valueswmfcan be
found in terms of the modified Bessel functioiRgx) andK,(x) of first and second kind,
respectively,
w(X) = C1lm(X) + C2Km(X), (29)

with

oo [0¢]

In() =Y asx®™ ™, Kn(x) =10g0)Im() + Y fsx*>™. (30)

s=0 s=0

Obviously K (x) is infinity at x =0, and thus to obtain a bounded solution we shall se

¢, =0in (29). Thexg andgs values in (30) are readily obtained (with some lengthy, thoug
straightforward, algebra) through the method of undetermined coefficients:

as = (sl(s+m)l2™)~1 s=0,... (31)
1722 Ml )m=S-I(m — s — 1)!/s!, s=0,....m—-1
ﬁS - Oa S=m
—1/2%"™11 /(s —m)l1/st S e (A /k+ 1/ (k+m)), s=m+1,....

The coefficients (31) and (32) can be fast computed with the recursive formulae

ap = (2™"m!)~t
as = as-1/[4s(s +m)], s=12...
Bm-1 = 2aom
Bm—k = 4M—k+ 1)(1 — K)Bm—k+1. k=2 ...,m
ﬁm =0 (34)
Bk = [Bmak—1 — 20 (2K + m)] /(4mk + 4K?), k=1,....

(33)

In the case of the pressure Poisson equation, (27) can be directly integratedrimbles,
without resorting to generalized power series technique, for the constantmede= 0,
to give

w(r) = c1 + ¢ log(r), (35)

which degenerates to(r) =c¢; when{0} C Q. For each subdomain the constactsand
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¢, are determined fulfilling the last four conditions in (25); more precisely the derivativ
of w; andw; appearing in the right-hand sides are evaluated by the Chebyshev colloca
differential operator, while the terms involving andv; are computed through (29) and
(30). The 4My — 1) matrix of the resulting system in the cad@ = 92p is banded with
an upper bandwidth 3.

Returning now to the issue of the removable axis singularity we recall that requiring 1
physical variables to be single valued at 0 leads to the appropriap®le conditionwhich
for both scalar and vector quantities is expressed imposing that the azimuthal derivat
must vanish at the origin [14]. Irrespective of the approximation used in the radial direct
the pole condition must be accounted for wH8hc Q (see among many other [15, 16]).
Ignoring it may give birth to significant degradations of the convergence properties of
spectral representation, and possibly, to instabilities [17].

There are several proposals for the application of Chebyshev expansion in the collocza
framework available in literature. A direct mapping of the quadrature poings las the
advantage of clustering many points near the origin which may be useful for certain phys
problems althougi =0 is not a physical boundary. Also, one can expand the unknow
variables in even or odd series which allows to keep a regular spacing of the colloca
points atr = 0. In the latter case the parity of the expansion must be compatible with t
behavior of the solution at the origin [3, 5]. Inspecting (30) it is observed that the leadi
behavior ofv, asr — 0, is

U ~ (rIM g ML Im=diyt (36)

Thus it is possible to incorporate the decay of the solution multiplying each of the po
nomials by the appropriate power 0{3], which improves the accuracy. Although, with
such a refinement, the expansions in even or odd Chebyshev series automatically s:
the pole condition, they are not well suited for pure collocation methods since fot
(i.e., non-axisymmetric problems), they require different collocation points for even a
odd m modes [1]. The approach followed herein is based instead on standard orthc
nal polynomial expansionp™ € Py) in [1, —1[ combined with Gauss—Radau quadrature
points. These nodes arise from the requirement of imposing boundary conditions at
end point (e.g.x = 1), solely. This is achieved by determining the roots of the polynomie
qx) = pN*ti(x) +apN(x), wherea= —pN+1(1)/pN(2) is chosen such thai(1) =0.
In the case of Chebyshev series explicit formulae for the quadrature points are availe
nk = co2wk/(2N + 1)) withk =0, ..., N. Obviously in a multi-domain context an affine
transformation mapping [1—1[onto§p/{0} is required. Using this set of collocation points
there is no need to impose any boundary condition at the origin, and additionally it p
vides enhanced resolution close te 0. In what follows we will show that the exponential
properties of this spectral approximation are retained for elliptic problems even in prese
of a nonlinear source term. Let us consider the numerical solution of the problem

,d?u  du

r W+ra—(ezr2+m2)u=f, reQ=[rirol, (37)

with m=¢ =1 and

2 . _r
f(r):er{[r—( 2 ) —1} COSZn(r—r.)_( 2t )(Zr —|—1)sin72ﬂ(r r.)}’

(38)
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TABLE |
L, Norm of the Error for Eq. (37) with Mg =3

N N x My Case 1 Case 2
4 12 162 x 1072 6.42 x 1072
6 18 380x 10 1.40x 1073
8 24 325x 10 1.16 x 10°°
10 30 142 x 108 493x 108
12 36 385x 1071 1.23x 10710
14 42 227 x 10714 7.45x 1074

for which the analytic solution(r) =€ cog2z (r —r;)/(ro, —r;)) exists. Since all data and
u are analytic we expect exponential convergence to the exact solution, for a fixed nun
of subdomains, as the number of collocation points is increased. Let us start comparing
behavior of the error in the presence (Casf % [0, 3]) and absence (CaseQ~=[1, 4])

of axis singularity. The boundary conditions are Neumann=at, and Dirichlet atr =r;

for Case 2, while only one boundary condition (Neumarm=at,) is prescribed for Case 1.
We consider three equally sized subdomains with the same number of points in each. Ta
shows, for both cases, that when the resolution is doubled the relative errordg therm

is more than squared (exponential decay). Table Il indicates, instead, that the error dec
algebraic with the number of subdomains. Thus no special effort is required to approxirn
the radial derivatives in the presence of the singularity when standard orthogonal polync
als are combined with the Gauss—Radau collocation points. Furthermore, the peculiar
of classical pseudo-spectral methods in Cartesian coordinates are retained both in t
of storage and accuracy, despite the additional difficulties associated with the cylindr
differential operators. Finally, the analytic expansion of the harmonic extension renders
proposed technique very appealing even in terms of computational efficiency. Although
above results are based on a simple model problem they nevertheless are representa
more complex situations recalling that for the Navier—Stokes equations the implicit tre
ment of the diffusive terms is the prevailing part. The main conclusions which can be dra
at least in qualitative manner, are that when the required accuracy is increased, it ma
more convenient to augment the number of collocation nodes rather than the numbe
subdomains. The opposite is true for those class of problems where accuracy is ot an
issue. However, one must keep in mind that the computational cost of the elliptic kerne
three dimensions scales, roughly speaking, Mthx My x Mg x N, whereh reduces from
3to 2ifthe LU factors are stored in a preprocessing stage. Thus from a computational

TABLE Il
L, Norm of the Error for Eqg. (37) with N =10

My N x My Case 1l Case 2
1 10 422 x 10°° 1.67x 10
3 30 142 x 10°® 493 x 108
5 50 221x 10°% 7.61x 1071
7 70 144 x 1074 5.00 x 1071t
9 90 170x 10722 6.61x 10712
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point of view it is tempting to keepl to moderate values and to ris&y. These conflicting
issues have to be compromised somehow and no general rules to simulate complic
flow structures can be stated. Our experience indicates that DNS of turbulent pipe flo\
moderate Reynolds number can be accurately carried outNvitil2 andMy ~ 6. These
features are shared by the one dimensional spectral element discretization ofeZlahng
[7], which, for the class of problem investigated herein, appears less efficient in as m
as the treatment of the elliptic operators is concerned. Comparing the cost of the pre
method with the single domain approach of Priymak [5], who also solved turbulent pi
flows, we claim a better efficiency with equal spatial resolution.

4. RESULTS

Hereafter we present numerical results for 3 test problems which clearly demonstrate
potential of the Navier—Stokes solver. Whenever possible we have used analytical solut
or reference numerical and experimental data for the sake of comparison.

4.1. Swirling Flow in Annular Pipe

This test case has been selected in order to verify the ability of the present metho
simulate, in the Navier—Stokes framework, steady flows which admit analytical solutic
with both axial and azimuthal velocity distributions. To this aim let us consider the ful
developed flow in the annular region between two coaxial circular cylinders whose ini
and outer radii are; andr,, respectively. The relevant non-dimensional parameter is d
fined asRe=u, 2ro(1 — 1) /v, whereu, represents the bulk (area averaged) axial velocit
andn =r;/r,. The analytic solution for laminar flow conditions, which occur as long a
Re< 2000, is easily found through momentum balance,

(1—(r/ro)®logn — (1 —n? log(r/ro)

Hall) = 2 % logn + (L= 1)

5 Vg = Wy = 0 (39)

In addition if the inner cylinder rotates at constant angular velacigpout thez axis, and
the associated Taylor numbérd = w riro(1 — n)/v) does not exceed a critical value [18],
the whole motion consists of a superposition of (39) with

r r
Ua=va=O, U)a(r) = C()r|1_Lr’2 |:r_0 - E:| . (40)

Expressinguy, in terms ofReand of the pressure gradient, it is easy to verify that solu
tion (39) reduces to the classical Hagen—Poiseuille formula-as0. In Fig. 1 we give
the computed streamwise and azimuthal normalized velocity components as a functic
the non-dimensional radius= (r — r;)/s, with s=r, — rj, together with the analytical
distributions, fopy=0.5 ands=1.

We have carried out computations of this flow for sevéid My) pairs and reported
in Tables Il and IV thel,, norm of the error. The exponential error decay, for a fixec
number of subdomaingdy = 2, and the algebraic character, for a fixed number of Chebysh
polynomialsN = 4, is then confirmed even for the whole Navier—Stokes algorithm.
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FIG. 1. Velocity components of swirling flow as a function of the non-dimensional radius.

4.2. Taylor Vortex Flow

We proceed in the validation of the method presenting in this section numerical solutit
of the Taylor—Couette flow for both axisymmetric and non-axisymmetric conditions. T
class of problems is known to represent a tough test-bench for all algorithms solving
Navier—Stokes equations as an initial value problem; as indicated in [19] these rota
flows are sensitive to the splitting errors because of the forcing term present at the ra
boundaries. In [19] a special set of Green functions allowing to satisfy exactly the invis
boundary conditions was found necessary to remove the time splitting errors. We s
attempt to give a numerical evidence of the quality of the present results comparing vari
integral and local quantities with the reference data of [20].

It is well known that several stable solutions of the Navier—Stokes equations govern
the Taylor—Couette flow exist, depending essentially on the values of three indepent
dimensionless parameters: the radius ratithe axial wavelength,, and the Reynolds
numberRe=wr;s/v. In what follows we have uses as the unit length. For each pair
(n, 12) there exists a critical valuRe.(n) such that foRe< Re,, (40) represents a stable
solution of (1)-(2). FoRe> Re,, which in the narrow gap limity — 1) can be estimated

TABLE 1l
L, Norm of the Error for Swirling Flow with My =2

N N x My lu— ual
4 8 436 x 102
6 12 621 x 10°°
8 16 806 x 107

10 20 100x 108

12 24 121 x 1071

14 28 176 x 10712
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TABLE IV
L, Norm of the Error for Swirling Flow with N=4

Mgy N x Mgy lu—uall
2 8 436x 1073
4 16 132x 102
6 24 611x 10
8 32 350 x 10

10 40 226 x 10

12 48 158 x 10

by eigenvalue analysis &g =4141(1 — 1)~%5, the circular Couette flow is unstable
to three dimensional axisymmetric Taylor vortices. The latter appear as counter-rota
toroidal vortices aligned along theaxis. At still higher Reynolds number Taylor vortex
flow is itself unstable to non-axisymmetric disturbances with several possible azimut
wavelengths. These flows are three dimensional and unsteady in general, although fc
one travelling wave case a proper choice of a rotating frame renders the flow steady [19]
have computed both steady axisymmetric Taylor vortex flow and non-axisymmetric we
vortex flow with one travelling wave. The initial conditions for the Taylor vortex flow wer
obtained perturbing the circular Couette flow with infinitesimal axisymmetric disturbanc
Similarly the one travelling wave solution was obtained perturbing the Taylor vortex flc
with non-axisymmetric disturbances. All calculations were carried out with 4 subdoma
each of which consisted of 12 Chebyshev polynomials and 32 axial Fourier modes
the non-axisymmetric case 32 azimuthal Fourier modes were employed. The subdornr
adjacent to the inner and outer walls were characterized by a radial extension egjiéal tc
to enhance the resolution of the near wall gradients. The time step was set to 0.01.

We begin the analysis reporting several integral parameters of physical quantities,
unit axial length, that characterize the different flow regimes, namely kinetic energy, angt
momentum, enstrophy, and torque. They obey the usual definitions:

2t Ly pro
E :/ / / \ul?r dr dz &, (41)
0 0 ri
2t Ly pro
gz/ / / wr2dr dz &, (42)
0 0 ri
27t Ly pro
5:/ / / IV x ul’rdrdz o, (43)
0 0 ri
27 rL, Jw
—_— 2_
Go = /0 /0 fo or

In Table V we compare the computed values for axisymmetric Taylor vortex(fjew
0.875 Re= 140 1, =2.5) and non-axisymmetric one travelling wave flow characterize
by a fundamental azimuthal wave number equal ¢ & 0.868 Re= 230, A, =2.14) with
the reference data of [20]. Despite the subtleties of the Taylor—Couette flow conditions,
quality of the results indicates that the proposed method represents a valid alternative t
use of Green function technique suggested in [19].

dz . (44)

r=ro
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TABLE V
Summary of Physical Properties for Taylor Vortex
Flow and One Travelling Wave Flow

Taylor vortex One travelling wave

Present  Datafrom[20] Present Datafrom [20]

E 7.14 7.14 6.13 6.13
L 163 163 142 142
Go 3.35 3.35 2.71 2.71
& 27.0 27.1 41.0 41.2

In Fig. 2 we give the axially and azimuthally averaged non-dimensional angular mom
tumrw/(wr?) as a function ot for both the axisymmetric (unstable) Taylor Vortex flow
and the non-axisymmetric one travelling wave flow characterized by an azimuthal w:
number equal to &y =0.875 Re=244 ) =3.0). The computed results are again com-
pared with the data of [20]. Note that the angular momentum of the stable one travell
wave flow exhibits a smaller gradient at the boundaries compared with the unstable Ta
vortex flow. Also the flattening afw in the core region is related to the larger momenturn
transfer. Keeping in mind that the error decay is exponential Widnd algebraic witiMgy
(see Subsection 4.1), we remark that the excellent agreement of our calculations witf
spectral single domain of [19] is to be attributed to the flexibility of the present method.
fact the rates at which angular momentum and energy leave or enter the cylinder are
portional to the viscosity and to the gradient velocity at the boundaries; thus any numer
calculation must correctly resolve the near wall regions, which in the framework of spect
multi-domain methods can be accomplished through a proper choice of the subdomz
height and the number of points independently.

1.0
Y — T.WV.
08 % « T.V. [20]
. - T.W.
e - T.W. [20]
0.6 N -
04 I SN
.
02 | \
0.0 l : : ‘
0.0 0.2 0.4 0.6 0.8 1.0

g

FIG.2. Angularmomentum as a function of the non-dimensional radius: Taylor vortex (T.V.) and one travelli
wave (T.W.).
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— Energy
107 ¢ --- Enstrophy

FIG. 3. Energy and enstrophy spectra as a function of the axial wave nugfmrTaylor vortex flow.

In Fig. 3 the one dimensional energy and enstrophy spectra are depicted as a fun
of the axial wave numbek, for the Taylor vortex flow(n =0.875 Re= 140, A, =2.5).
We note that bottE (k) and&(k,) obey a rate of fall off ag % and are very smooth as
demonstrated by [20]. Also, the absence of any upward curl in the spectra at large w
numbers indicates the adequacy of the spatial resolution.

In Fig. 4 we show the azimuthal velocity component isolines together with the veloc
vectors, for both the Taylor Vortex and the one travelling wave flows. The previous
mentioned flattening ofw in the gap core is clearly related to a more intense vortice
activity. Note that the boundary layers in the cross plane are substantially fuller for the
travelling wave flow.

4.3. Direct Numerical Simulation of Pipe Flow

We have computed a fully developed turbulent pipe flow at a Reynolds number of 2°
based on bulk velocity, and pipe diameteD = 2R, to assess the ability of the method in
dealing with complicated flow structures as well as to demonstrate the effectiveness of
pipe axis treatment. The length of the pifte. = 8R) is chosen long enough to include the
largest scale structures in the flow. The computation was carried out with 442,368 grid pc
(6 subdomains each of which consisted ofli&4 x 96 points in radial, circumferential, and
streamwise directions, respectively). With this configuration the mininalue at the pipe
axis was 34 x 104, The radial extent of the near wall subdomain was adjusted in suct
way that the first mesh point away from the wall is locatedfat (R—r)u, /v = 0.1 where
U, = (/)% is the wall shear velocity. Our streamwise grid-spadig is 7.7 wall units,
while the circumferential oneAd™ varies linearly withr, from a maximum value of 9.1 at
the pipe wall, to 0.01 at the pipe axis. This resolution is comparable both to the one use
Eggelset al.[21] in their pipe flow simulation (B, 8.8, 7 inr, 6, z directions), and by Kim
et al.[22] in their plane channel (8, 7, 12 normal to the wall, span-wise, and streamwise
directions, respectively). Computing the mean grid gize= (Ar *r A6+ Az")Y/2 we have
checked that the resolution is sufficient to resolve all relevant turbulent scales, almost d
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FIG. 4. Azimuthal velocity contours (contour leval=0.05) and velocity vectors: Taylor vortex flow (a) and
travelling wave flow (b).

to the Kolmogorov scalg™, for which estimates were given in [23]. The time step was se
to At=5x 1073,

The initial velocity field has been created superposing to alogarithmic distribution rand
noise with a prescribed standard deviation. The steady state is identified by a constant
averaged wall shear stress, and by a quasi periodic turbulent kinetic energy. The sample
used to collect statistics is roughly 14 non-dimensional time @hitstu, /D. In Fig. 5 we
present the energy spectra of all velocity components, normalized with the friction veloc
at two different radial locations, namely ~ 10 and'* ~ 90. The spectra are presented as
a function of the streamwise wave numisge= 2rk/L,. The drop in the energy of several
orders of magnitude and the absence of pile up at the highest wave number clearly re
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FIG.5. One dimensional energy spectra.

that the simulation is “resolved” in the sense described above. In particular the distinc
between the range of dissipative scales and the energy containing motions is rather ne
r+ =90, as confirmed by the resemblance of the computed spectra withttamdk—5/3
slopes. The reduced extent of the inertial sub-range agrees with theoretical arguments s
that a sufficiently wide separation between the largest and smallest eddies is only pre
when the turbulent Reynolds number, based on Taylor micro-sbalés larger than 2000.
Starting from the streamwise correlation coeffici€yt, we have estimate&®e, to be of
order 100. The computed skin friction coeffici&t = ,,/(0.5pU,?) =11.13x 1023 isin
very good agreement with the Blasius 1@y =0.079Re %%°=11.19 x 1073,

In Fig. 6 we present the mean velocity profile normalized by the centerline veloc
together with the experimental data of Patel and Head [24] and those of Ehaln@]. The

1.0 p—»
[
[ ]

08 | N

L}

[ ]
06 r
041
— Present
0o | + Zhang et. al. Re=2500 [7]
’ ¢ Patel & Head Re=2680 [24]
0.0 : : : :
0.0 0.2 0.4 0.6 0.8 1.0

/R

FIG. 6. Streamwise mean velocity profiles in outer coordinates.
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30
- U+=r+
-— u+=2.5*In(r+)+5.5
20 |
10 }
0 L
107" 10° 10' 10°

r+

FIG. 7. Streamwise mean velocity profiles in inner coordinates.

DNS data, which agree well among themselves, suggest fuller velocity profiles compa
to the experiments. In Fig. 7 the mean velocity profile is given in inner variables, toget
with the law of the wall and the logarithmic one. It is observed that the viscous subla)
is completely resolved by the simulation, while important deviations from the univers
profile distribution are present for > 10. This trend agrees with the observations of Pate
and Head [24] who demonstrated that low Reynolds number pipe flews: (L0%) fail to

conform to the law of the wall. In Fig. 8 we present the turbulent intensities of all veloci
components normalized with the theoretical value of the shear velocity. The agreen

4.0

o U’ Zhang et al. [7]
= v’ Zhang et al. [7]
+ w’ Zhang et al. [7]

30 r

FIG. 8. Normal stress components.
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FIG. 9. Shear stresses.

between the computations is generally good; also, the limiting values in the near wall reg
are consistent with the theoretical ones, obtained from physical considerations on the
slip boundary condition and the continuity equation. No experimental data are avails
at this Reynolds number. The Reynolds shear stresses and the viscous one are sho
Fig. 9, together with the data of [7], which have been normalized with the theoretical va
of the shear velocity. The total shear stress distribution is linear for fully developed pi
flows, since it must balance the imposed volumetric flow rate. The Reynolds stress att
its maximum value at/R~0.68, r*~ 30, before decaying rapidly to zero at the wall
where the viscous shear stresses are predominant.
In Fig. 10 we give the instantaneous distributions of the three Cartesian component
the vorticity along a line crossing the pipe center inthe z plane. Note that although the

4
—— x component

--- y component ,

2} | -—- zcomponent

01 0.2

1.0

_6 L L L
-1.0 -0.5 0.0 0.5
r’/R

FIG. 10. \Vorticity profiles.
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FIG. 11. Instantaneous velocity vectors (a), streamwise velac{ty), streamwise vorticity, (c), and shear
stresauv (d).

continuity of the gradient of the velocity field is not explicitly enforced at the interface
the vorticity components are smooth and perfectly resolved in the whole domain. W
reference to the pipe axis the same figure shows a close up view in the core region w
clearly demonstrates the effectiveness of the treatment of the singularity. In Fig. 11
present the velocity vectors, the streamwise velocity, the streamwise vorticity, and the s|
stressuv taken from an instantaneous field. Let us focus the attention on the large sc
coherent structures of Fig. 11a. The two pairs of co-rotating vortices associated with
two mushroom-type structures are clearly visible in Fig. 11b. The streamwise vorticity
Fig. 11c also shows a peak at similar locations. Finally Fig. 11d indicates that the Reync
stress generation (light area) is predominant in the near wall region. In particular the
right maximum seems to be associated with a fourth quadrant event (sweep), that is, pos
streamwise fluctuations are connected with high speed fluid lumps arriving at the wall.
instantaneous quantities appear smooth and well resolved.
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5. CONCLUSION

In this paper we have discussed the construction of a fast pseudo-spectral Navier—St
solver for cylindrical geometries which is shown to possess the accuracy required for
direct numerical simulation of turbulent flows with two homogeneous directions. The f
mulation overcomes the issues related to the axis singularity adopting as expansion ba:
the radial direction standard Chebyshev polynomials combined with a special set of cc
cation nodes. The multi-domain technique based on patching interfaces provides additi
flexibility both in terms of computational efficiency and near wall resolution, the latter beit
a key issue for the simulation of turbulent flows. The elliptic kernel enjoys the efficiency
an analytic expansion of the harmonic extension. We have demonstrated that whole sct
attains exponential accuracy on a domain basis not only for elliptic model problems,
also for the full Navier—Stokes equations.
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